370 research outputs found

    CFD analysis of liquid stream going through the wire-screen mesh

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.Wire-screen mesh is normally used for the removal of particles from a liquid stream. Here we consider a system where fluid passes wire-screen mesh perpendicularly. The configurations of wire-screen mesh such as diameter and shape factor of wire affect the stream of fluid going through the screen. In this study, we performed a theoretical approach to the relation between wire mesh and fluid stream with computational fluid dynamics (CFD). FLUENT is used for the simulation. Head loss can be estimated by Rose equation when the stream passes through the wire-mesh (Rose 1945). The drag coefficient (CD) varies with the stream types. The other parameters depend on a specific mesh, velocity and pressure. In the experiment we used a screen of 50 mesh-size and water as a fluid. The pressure drop during water flow was determined. The average and maximum velocities of water were calculated. On the basis of these values, we derived a proportional factor between the velocity of fluid and head loss that can estimate CD.cs201

    Improving the Segmentation Stage of a Pedestrian Tracking Video-based System by means of Evolution Strategies

    Get PDF
    12 pages, 7 figures.-- Contributed to: Eighth European Workshop on Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP 2006, Budapest, Hungary, Apr 10-12, 2006).Pedestrian tracking video-based systems present particular problems such as the multi fragmentation or low level of compactness of the resultant blobs due to the human shape or movements. This paper shows how to improve the segmentation stage of a video surveillance system by adding morphological post-processing operations so that the subsequent blocks increase their performance. The adjustment of the parameters that regulate the new morphological processes is tuned by means of Evolution Strategies. Finally, the paper proposes a group of metrics to assess the global performance of the surveillance system. After the evaluation over a high number of video sequences, the results show that the shape of the tracks match up more accurately with the parts of interests. Thus, the improvement of segmentation stage facilitates the subsequent stages so that global performance of the surveillance system increases.Funded by CICYT (TIC2002-04491-C02-02)Publicad

    Finite-Temperature Transport in Finite-Size Hubbard Rings in the Strong-Coupling Limit

    Full text link
    We study the current, the curvature of levels, and the finite temperature charge stiffness, D(T,L), in the strongly correlated limit, U>>t, for Hubbard rings of L sites, with U the on-site Coulomb repulsion and t the hopping integral. Our study is done for finite-size systems and any band filling. Up to order t we derive our results following two independent approaches, namely, using the solution provided by the Bethe ansatz and the solution provided by an algebraic method, where the electronic operators are represented in a slave-fermion picture. We find that, in the U=\infty case, the finite-temperature charge stiffness is finite for electronic densities, n, smaller than one. These results are essencially those of spinless fermions in a lattice of size L, apart from small corrections coming from a statistical flux, due to the spin degrees of freedom. Up to order t, the Mott-Hubbard gap is \Delta_{MH}=U-4t, and we find that D(T) is finite for n<1, but is zero at half-filling. This result comes from the effective flux felt by the holon excitations, which, due to the presence of doubly occupied sites, is renormalized to \Phi^{eff}=\phi(N_h-N_d)/(N_d+N_h), and which is zero at half-filling, with N_d and N_h being the number of doubly occupied and empty lattice sites, respectively. Further, for half-filling, the current transported by any eigenstate of the system is zero and, therefore, D(T) is also zero.Comment: 15 pages and 6 figures; accepted for PR

    Recognition of the Phanerozoic “Young Granite Gneiss” in the central Yeongnam Massif

    Get PDF
    Up to now, all the high-grade gneisses of the Korean peninsula have been regarded as Precambrian basement rocks and presence of the Phanerozoic high-grade metamorphic rocks have remained unknown. However, such granite gneiss is discovered through this study from the central Yeongnam massif near Gimcheon. SHRIMP zircon U-Pb age determinations on the granite gneiss, having well-developed gneissic foliations and migmatitic textures, reveal concordant age of ca. 250 Ma indicating the Early Triassic emplacement of this pluton, which is in contradict to the previous belief that it is a Precambrian product. Even though the granite gneiss reveals well-developed gneissic foliations and some zircons show rather low Th/U ratios, the metamorphic age has not been determined successfully. However, the age of metamorphism can be constrained as middle Triassic considering the absence of any evidences of metamorphism from the nearby granitic plutons having emplacement ages of ca. 225 Ma. Early Triassic emplacement and subsequent Middle Triassic metamorphism of the granite gneiss from the Yeongnam massif bear a remarkable resemblance to the case of South China block. We suggest the possibility that Early to Middle Triassic metamorphism of the Korean peninsula might be products of the intracontinental collisional events not directly related with the Early Triassic continental collision event

    Airway tapering: an objective image biomarker for bronchiectasis

    Get PDF
    Purpose: To estimate airway tapering in control subjects and to assess the usability of tapering as a bronchiectasis biomarker in paediatric populations. Methods: Airway tapering values were semi-automatically quantified in 156 children with control CTs collected in the Normal Chest CT Study Group. Airway tapering as a biomarker for bronchiectasis was assessed on spirometer-guided inspiratory CTs from 12 patients with bronchiectasis and 12 age- and sex-matched controls. Semi-automatic image analysis software was used to quantify intra-branch tapering (reduction in airway diameter along the branch), inter-branch tapering (reduction in airway diameter before and after bifurcation) and airway-artery ratios on chest CTs. Biomarkers were further stratified in small, medium and large airways based on three equal groups of the accompanying vessel size. Results: Control subjects showed intra-branch tapering of 1% and inter-branch tapering of 24–39%. Subjects with bronchiectasis showed significantly reduced intra-branch of 0.8% and inter-branch tapering of 19–32% and increased airway–artery ratios compared with controls (p < 0.01). Tapering measurements were significantly different between diseased and controls across all airway sizes. Difference in airway–artery ratio was only significant in small airways. Conclusion: Paediatric normal values for airway tapering were established in control subjects. Tapering showed to be a promising biomarker for bronchiectasis as subjects with bronchiectasis show significantly less airway tapering across all airway sizes compared with controls. Detecting les

    TNF signalling drives expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral leishmaniasis

    Get PDF
    Visceral leishmaniasis is associated with significant changes in hematological function but the mechanisms underlying these changes are largely unknown. In contrast to naïve mice, where most long-term hematopoietic stem cells (LT-HSCs; LSK CD150+ CD34- CD48- cells) in bone marrow (BM) are quiescent, we found that during Leishmania donovani infection most LT-HSCs had entered cell cycle. Loss of quiescence correlated with a reduced self-renewal capacity and functional exhaustion, as measured by serial transfer. Quiescent LT-HSCs were maintained in infected RAG2 KO mice, but lost following adoptive transfer of IFNγ-sufficient but not IFNγ-deficient CD4+ T cells. Using mixed BM chimeras, we established that IFNγ and TNF signalling pathways converge at the level of CD4+ T cells. Critically, intrinsic TNF signalling is required for the expansion and/or differentiation of pathogenic IFNγ+CD4+ T cells that promote the irreversible loss of BM function. These finding provide new insights into the pathogenic potential of CD4+ T cells that target hematopoietic function in leishmaniasis and perhaps other infectious diseases where TNF expression and BM dysfunction also occur simultaneously

    The genera Melanothamnus Bornet & Falkenberg and Vertebrata S.F. Gray constitute well-defined clades of the red algal tribe Polysiphonieae (Rhodomelaceae, Ceramiales).

    Get PDF
    Polysiphonia is the largest genus of red algae, and several schemes subdividing it into smaller taxa have been proposed since its original description. Most of these proposals were not generally accepted, and currently the tribe Polysiphonieae consists of the large genus Polysiphonia (190 species), the segregate genus Neosiphonia (43 species), and 13 smaller genera (< 10 species each). In this paper, phylogenetic relationships of the tribe Polysiphonieae are analysed, with particular emphasis on the genera Carradoriella, Fernandosiphonia, Melanothamnus, Neosiphonia, Polysiphonia sensu stricto, Streblocladia and Vertebrata. We evaluated the consistency of 14 selected morphological characters in the identified clades. Based on molecular phylogenetic (rbcL and 18S genes) and morphological evidence, two speciose genera are recognized: Vertebrata (including the type species of the genera Ctenosiphonia, Enelittosiphonia, Boergeseniella and Brongniartella) and Melanothamnus (including the type species of the genera Fernandosiphonia and Neosiphonia). Both genera are distinguished from other members of the Polysiphonieae by synapomorphic characters, the emergence of which could have provided evolutionarily selective advantages for these two lineages. In Vertebrata trichoblast cells are multinucleate, possibly associated with the development of extraordinarily long, photoprotective, trichoblasts. Melanothamnus has 3-celled carpogonial branches and plastids lying exclusively on radial walls of the pericentral cells, which similarly may improve resistance to damage caused by excessive light. Other relevant characters that are constant in each genus are also shared with other clades. The evolutionary origin of the genera Melanothamnus and Vertebrata is estimated as 75.7-95.78 and 90.7-138.66 Ma, respectively. Despite arising in the Cretaceous, before the closure of the Tethys Seaway, Melanothamnus is a predominantly Indo-Pacific genus and its near-absence from the northeastern Atlantic is enigmatic. The nomenclatural implications of this work are that 46 species are here transferred to Melanothamnus, six species are transferred to Vertebrata and 13 names are resurrected for Vertebrata

    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Get PDF
    Peer reviewe

    Synaptic processes and immune-related pathways implicated in Tourette syndrome.

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS
    corecore